E-fuels are a big deal, particularly for aviation. Non-electricity emissions are also something to watch. Hydrogen as a reducing agent seems like it can work very well as long as we do phase out fossil fuels like promised, so that solves steel production and similar. Calcination CO2 from concrete kilns is a very sticky wicket apparently, since they’re extremely hot, heavy, and also need to rotate, which is challenging to combine with a good seal.
Cheap grid storage is a trillion-dollar question, but I suspect even if new technology doesn’t materialise, pumped air with some losses can do the trick, again subject to proper phase-out of dirty power sources.
Here you go, you’ll need numpy, scipy and matplotlib:
from scipy.optimize import curve_fit
from matplotlib import pyplot as plt
# 2010-2013 data from https://ourworldindata.org/renewable-energy [TWh]
y = np.array([32, 63, 97, 132, 198, 256, 328, 445, 575, 659, 853, 1055, 1323, 1629])
x = np.arange(0, len(y))
# function we expect the data to fit
fit_func = lambda x, a, b, c: a * np.exp2(b * x ) + c
popt, _ = curve_fit(fit_func, x, y, maxfev=5000)
fig, ax = plt.subplots()
ax.scatter(x + 2010, y, label="Data", color="b", linestyle=":")
ax.plot(x + 2010, fit_func(x, *popt), color="r", linewidth=3.0, linestyle="-", label='best fit curve: $y={0:.3f} * 2^{{{1:.3f}x}} + {2:.3f}$'.format(*popt))
plt.legend()
plt.show()
Here’s what I get, global solar energy generated doubles every ~3.5 (1/0.284) years.
So that’s just solar, then? Long term, it does seem like the one that’s the biggest deal, but right now there’s also a lot of wind and hydro in the mix, so that’s another point in favour of the assumptions here being conservative.
Yes, just solar. Hydro is bigger now, but it doesn’t have the growing potential. Wind is currently also growing exponential, but I don’t see it doing that for 20 more years. And even if it does, it doesn’t really make a big difference since exponential + exponential is still exponential. If it grows as fast as solar that would mean we’re just a few years ahead of the curve.
Yes, code please! This sounds amazing.
E-fuels are a big deal, particularly for aviation. Non-electricity emissions are also something to watch. Hydrogen as a reducing agent seems like it can work very well as long as we do phase out fossil fuels like promised, so that solves steel production and similar. Calcination CO2 from concrete kilns is a very sticky wicket apparently, since they’re extremely hot, heavy, and also need to rotate, which is challenging to combine with a good seal.
Cheap grid storage is a trillion-dollar question, but I suspect even if new technology doesn’t materialise, pumped air with some losses can do the trick, again subject to proper phase-out of dirty power sources.
Here you go, you’ll need numpy, scipy and matplotlib:
Here’s what I get, global solar energy generated doubles every ~3.5 (1/0.284) years.
Thank you! That does look like a great fit.
So that’s just solar, then? Long term, it does seem like the one that’s the biggest deal, but right now there’s also a lot of wind and hydro in the mix, so that’s another point in favour of the assumptions here being conservative.
Yes, just solar. Hydro is bigger now, but it doesn’t have the growing potential. Wind is currently also growing exponential, but I don’t see it doing that for 20 more years. And even if it does, it doesn’t really make a big difference since exponential + exponential is still exponential. If it grows as fast as solar that would mean we’re just a few years ahead of the curve.